OI - TN's Kingdom III - Assassination(POJ) | Lucky_Glass's Blog
0%

OI - TN's Kingdom III - Assassination(POJ)

这个标题就出奇的长


# 题面

$n$ 次多项式 $\alpha$ 和 $\beta$ 做循环卷积得到 $\gamma$。现在已知 $\beta,\gamma$,求 $\alpha$。

换句话说:

数据规模:$n< 2^{17}$。


# 解析

直到现在我才知道 FFT 本来就是做的循环卷积……只不过以前用 FFT 做多项式线性卷积都是把多项式次数 $N$ 设得特别大,然后体现在系数上就没有循环。

但是我们实现的 FFT 都是分治做的,要求多项式次数是二的幂。就没有办法做任意长度的循环卷积。

Hint.

普通的 FFT 也可以解决一部分循环卷积问题,只需要把多项式次数设得很大,先计算出 $\alpha,\beta$ 的线性卷积,再手动把 $x^t$ 的系数加到 $x^{t\bmod n}$ 上去。

只不过这样没有办法倒过来,知道 $\alpha\times\beta=\gamma$ 的 $\beta,\gamma$ 求 $\alpha$。

那就先不管 FFT,来推一下对多项式 $f$ 求 DFT 的式子。记 $X_k$ 表示 $f(e^{-\frac{2\pi k}Ni})$(也就是求 DFT 后的第 $k$ 项),$f_k$ 是 $f$ 的 $x^k$ 项的系数:

Hint.

$e^{\frac{2\pi} ni}$ 就是单位复根,也可以写作 $\omega_n=\cos\frac{2\pi}n+\sin\frac{2\pi}ni$(是不是看起来熟悉一点了)。

接下来就是最重要的部分:

于是

可以看出 $X_k$ 后面的求和式是一个线性卷积,可以用 FFT。

值得注意的是这个卷积的下标 $k-n$ 的范围是 $[1-N,N-1]$,是可能有负数的。所以先给它平移 $N$ 位。

逆变换也基本一样:

所以构造出这样两个数列:

卷积得到多项式 $C$,别忘了 $C$ 是左移了 $N$ 位的。

这样就实现了循环卷积。整个算法思路归为 bluestein,是一种把循环卷积转化为线性卷积的方法。


# 源代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*Lucky_Glass*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

struct Complex{
double r,i;
Complex(const double &_r=0,const double &_i=0):r(_r),i(_i){}
Complex operator *(const Complex &v)const{
return Complex(r*v.r-i*v.i,r*v.i+i*v.r);
}
Complex operator +(const Complex &v)const{
return Complex(r+v.r,i+v.i);
}
Complex operator -(const Complex &v)const{
return Complex(r-v.r,i-v.i);
}
Complex operator /(const double &k)const{
return Complex(r/k,i/k);
}
Complex operator /(const Complex &v)const{
return Complex((i*v.i+r*v.r)/(v.r*v.r+v.i*v.i),(i*v.r-r*v.i)/(v.r*v.r+v.i*v.i));
}
};
Complex omega(const double &k){return Complex(cos(k),sin(k));}

const int N=(2<<17)+10;
const double PI=acos(-1.0);

int rev[N<<2];

void FFT(Complex *ary,int n,int typ){
for(int i=1;i<n;i++){
rev[i]=rev[i>>1]>>1|((i&1)*(n>>1));
if(rev[i]<i) swap(ary[rev[i]],ary[i]);
}
for(int i=1,ii=2;i<n;i<<=1,ii<<=1){
Complex wn=omega(PI/i*typ);
for(int j=0;j<n;j+=ii){
Complex wi(1,0);
for(int k=j;k<j+i;k++,wi=wi*wn){
Complex tmp=wi*ary[k+i];
ary[k+i]=ary[k]-tmp;
ary[k]=ary[k]+tmp;
}
}
}
if(typ==-1) for(int i=0;i<n;i++) ary[i]=ary[i]/n;
}
void bluestein(Complex *ary,int n,int typ){
static Complex aryA[N<<2],aryB[N<<2];
memset(aryA,0,sizeof aryA);
memset(aryB,0,sizeof aryB);
for(int i=0;i<n;i++)
aryA[i]=omega(-typ*PI*i*i/n)*ary[i];
for(int i=0;i<(n<<1);i++)
aryB[i]=omega(typ*PI*(i-n)*(i-n)/n);
int len=1;
while(len<(n<<2)) len<<=1;
FFT(aryA,len,1),FFT(aryB,len,1);
for(int i=0;i<len;i++) aryA[i]=aryA[i]*aryB[i];
FFT(aryA,len,-1);
for(int i=0;i<n;i++){
ary[i]=aryA[i+n]*omega(-typ*PI*i*i/n);
if(typ==-1) ary[i]=ary[i]/n;
}
}

int n;
Complex aryA[N],aryB[N];

int main(){
// freopen("input.in","r",stdin);
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%lf",&aryA[i].r);
for(int i=0;i<n;i++) scanf("%lf",&aryB[i].r);
bluestein(aryA,n,1),bluestein(aryB,n,1);
for(int i=0;i<n;i++) aryA[i]=aryB[i]/aryA[i];
bluestein(aryA,n,-1);
for(int i=0;i<n;i++) printf("%.4f\n",aryA[i].r);
return 0;
}

THE END

Thanks for reading!

> Link 你是我遥不可及的梦-Bilibili